
DiscOrDance: Visualizing Software Developers
Communities on Discord

Marco Raglianti, Csaba Nagy, Roberto Minelli, Michele Lanza
REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract—New communication platforms have emerged to sup-
port developers in finding and creating the knowledge they need
for program comprehension, maintenance, and evolution. Instant
messaging applications are supplanting developer mailing lists in
collaborative development toolchains. These applications provide
a new medium, supporting faster and richer communication
(e.g., embedded previews, images, files, videos). Research so far
focused on extracting information from these platforms, but there
is a lack of tools to visually and interactively explore them.

We present DISCORDANCE, a tool for the interactive visual
exploration of the complete message history of a Discord server.
We show how three categories of views elicit insights on aspects
of the structure, members, and software related content of a
Discord server. We demonstrate use cases of DISCORDANCE
to support software maintenance and evolution activities on an
active software developer community, the Pharo Discord server.

Demo video: https://youtu.be/eYCLGWwM9HY
Tool homepage: https://discordance.si.usi.ch
Index Terms—software communities, collaborative develop-

ment, visualization, Discord

I. INTRODUCTION

In the context of collaborative development, toolchains fill
the role of supporting inter-developer communication with
different software solutions [1], [2]. Instant messaging com-
munication platforms have replaced traditional media (e.g., de-
veloper mailing lists). Gitter [3]–[6], Slack [6]–[9], and Dis-
cord [10]–[12] are examples of platforms where developers
discuss project- or language-related issues, ask for support
with software design or code comprehension, request reviews,
and share source code snippets.

All these activities can be seen as a source of informal docu-
mentation where, above all, design, explanatory, and structural
information is discussed [8], and therefore represent new pos-
sibilities for maintenance and evolution activities. Documen-
tation generated on instant messaging platforms share many
commonalities with the one present in social networks [13],
and forum-like Q&A websites (e.g., StackOverflow [14]), in
particular, with respect to crowd-sourcing aspects [15].

What sets instant messaging apart is the throughput of the
channel and the volatility of its content. This is even more
evident in the lack of tools to grasp the structure of a Discord
server or to retrieve specific information. Discord, for example,
supports word-based search in the whole history of a channel,
with filtering criteria such as date, sender, and presence of
embedded links or images. Although this might work for a
quick search in a low-traffic channel, it does not scale up to
generic information retrieval on large servers. Dealing with
high throughput is essentially left to manual labor by users.

Categories
and 

channels

Servers

Main area for
selected channel

Users in
current
channel

Search

Fig. 1: A Screenshot of the Discord Desktop Application

Fig. 1 shows the user interface (UI) of the Discord desktop
application. Discord is available for desktop (i.e., Linux,
Windows, macOS) and smartphones (i.e., Android and iOS).

The desktop application is organized in columns containing
the servers list, categories and channels, the messages of the
selected channel, and the member list. The mobile UI features
the same components but with a layout more suitable for small
screens. Discord servers may contain tens of thousands of
users and reach a throughput of several messages per second.

We developed DISCORDANCE, a tool to overcome issues
with high throughput and volatility of developer communica-
tions on Discord. DISCORDANCE enables visualization and
live exploration of the complete message history of a Discord
server. Its domain model is built around the source code and
related conversations to support software maintenance and
evolution activities. The model is represented as a graph, it
allows to extract and persist information in a form that better
suits analysis and retrieval needs. Besides six pre-defined
views, DISCORDANCE can be easily extended with custom
view specifications to elicit further insights. Metrics of nodes
and edges (i.e., entities) can be mapped to visual properties of
the glyphs representing them (e.g., rectangles, circles, lines).

Structure of the Paper. In Section II we present the
user interface and the architecture of DISCORDANCE and
we explain how to define custom view specs. Section III
illustrates the usage of DISCORDANCE on a specific software
community Discord server. Section IV outlines the related
work and Section V concludes our paper.



Status bar

Tooltip

Menu bar

Entities

Current view

Search/Select

1

2

3

4

5

6

Fig. 2: The User Interface of DiscOrDance

II. DISCORDANCE

We developed DISCORDANCE to mine the message history
of a Discord1 server. DISCORDANCE is implemented in
Pharo2 and it is composed of a scraper bot, an object-oriented
domain model of a Discord server, and a user interface for
interactive visualization and exploration of a server instance.

Fig. 2 shows a screenshot of the user interface of DIS-
CORDANCE. The menu bar 1 allows to select pre-defined
view specs, change the layout of the current view, select nodes
and edges and spawn a new view from the current selection,
inspect the current graph, and handle visibility of specific
elements. An entry also collects diverse custom operations
related to the model (e.g., cleaning, saving), metrics, and
metric normalization. Entities 2 are shown in the main canvas
and can support on-hover tooltips 3 for displaying relevant
information about them. DISCORDANCE also supports con-
textual menu interactions on the entities (e.g., right click on
a message node → Open in Discord). A status bar 4 reports
information about hovered entities and statistics for the graph
in the current view 5 . Finally, a selection window 6 allows
to filter entities and select them programmatically.

DISCORDANCE does not need any configuration and works
out-of-the-box, but it can be extended by implementing new
metrics and view specs (see Section II-B and Section II-C).

A. Architecture

Fig. 3 summarizes the architecture of DISCORDANCE.

DiscOrDance
Domain
model

Discord
Server

REST

Visualization and 
exploration

Pharo (Language + IDE)

DiscordST
API

Fig. 3: The Architecture of DiscOrDance
1See https://discord.com [accessed August 5, 2022]
2See https://pharo.org [accessed August 5, 2022]

DISCORDST [16] is a client for Discord that includes a
subset of the public Discord REST API. The bot must be
added by the server administrators with reading permissions
(read message history). Then it can scrape the structure and
content of a server and store it locally. It retrieves channels
and their messages, and builds the model (e.g., adds links for
mentions between authors).

The scraping process attempts to retrieve all the entities
of interest (e.g., authors, messages, attachments, code) and
populates the internal domain model accordingly (i.e., nodes
for messages, edges for mentions). After the scraping is
complete, the graph of all nodes and edges is created and the
resulting instance can be explored in a new window, according
to a selected pre-defined view specification (Fig. 2).

B. Metrics

DISCORDANCE implements two types of metrics: Color
and numeric. Color metrics map categorical attributes of the
entity (e.g., activity status) to an output color. Numeric metrics
correspond to numeric attributes of the entity (e.g., LOC of
a code snippet). Table I shows the implemented metrics and
an example of their meaning. Every numeric metric has a
normalized version where the minimum and maximum values
for the normalization can be provided.

TABLE I: Metrics, Types, and Example Values

Metric Type Example(s)
Active Authors Numeric # authors active in a channel
Active Channels Numeric # channels in which author is active
Active Status Color Server membership status
Activity Span Numeric # days of activity in a channel
Channel Type Color Voice or Text
Class References Numeric # references of a class
Code Size Numeric Size of code in bytes
Contained Messages Numeric # messages contained in a category
LOC Numeric # lines of code
Max Daily Messages Numeric Maximum # sent messages per day
Mentions Numeric # mentions of other users
Sent Messages Numeric # messages sent in a channel
Syntax Highlight Color Language syntax highlighting



C. View Specs

Views are the way entities of the graph are displayed in
DISCORDANCE. Views are created following templates called
view specs. A view spec is a specification of entities, a layout,
glyph mappings, metric mappings, a sorting block, and a
filtering block (all attributes are optional).

Entities: Limiting the scope to specific entity types allows
to filter out all nodes and edges except those of interest.

Layout: Takes care of positioning entities on the canvas
(unless a metric is mapped to the glyph position).

Glyph Mappings: Define associations between entity types
and their visual representation. Custom glyphs are defined for
nodes and edges. Subtype mapping is supported.

Metric Mappings: Each entity type can have associations
between metrics of the entity (e.g., # of references of a class)
and visual attributes of the glyph (e.g., size, color, position).

Sorting Block: A code block that provides the ordering of
entities based on their properties. Layouts considering ordering
(e.g., flow layout) will position glyphs in the resulting order.

Filtering Block: A code block that filters specific entities
based on their properties instead of their type. For example, a
view considering only recent messages can show all message
entities and filter according to sending date.

Although custom view spec definitions are possible (Fig. 4),
DISCORDANCE offers six pre-defined views to explore dif-
ferent aspects of a Discord server: server structure (Channel
Activity View and Channel Activity Timeline View), message
authors (Author Activity Status View and Author Activity
Sparkline View), and source code shared among members of
the community (Code Blocks View and Class References View).
These views are also implemented through the view specs
mechanism and described in detail in our previous work [10].

Fig. 4: Example of a View Spec Definition.

D. Manual Inspection

The Pharo IDE provides an inspector for objects, supporting
live navigation of object instances. Through the inspector we
can explore the object-oriented model by navigating the prop-
erties and content of entities in the graph. The inspector also
supports custom code execution in a playground to quickly try
ideas and test hypotheses directly on the live model.

In Fig. 5, we show an example of a code node glyph with
its instance variables. The glyph is mapped to a code entity.
Navigating the link to the container message allows us to see
where that code has been referenced in a conversation and
retrieve the actual message entity for further exploration. The
Pharo code at the bottom can be evaluated in the context of
the current object, for example allowing to open the original
Discord message in the browser.

Fig. 5: Pharo Inspector and an Example Code Node Glyph

III. PHARO DISCORD SERVER

We present insights from the Pharo community Discord
server elicited by channel, author, and source code views.

Channel Views. This view provides a structural overview
of a server. Categories and channels are depicted with shapes.
Edges between channels and categories represent containment
relationships. The size of glyphs is proportional to the number
of messages, pinpointing the most active channels. Fig. 6
shows the Channel Activity View of the “Libraries” category.

Fig. 6: Channel Activity View of the “Libraries” Category

Its channels are different in terms of activity and the
number of members actively participating. By hovering over
the “Cormas” channel, we can see in the status bar that it
has 30 active authors who contributed about 3,100 messages.
Channels “Roassal” and “Seaside” have a broader number
of participants (i.e., 154 and 153 respectively) with a higher
overall activity of more than 7,500 messages each.

Fig. 7: Channel Activity Timeline View of 14 Channels



Fig. 7 shows the Channel Activity Timeline View of four-
teen channels, highlighting their different types. Either by
manual inspection (Section II-D) or with the information
provided in the status bar (Fig. 2 – 4 ), we can see that
“hadoop” has been a short-lived channel while “databases”
is old and still active (∼4,200 messages since Apr 2017).
The Ukrainian Pharo community has been active between Apr
2017 and Dec 2019. French-speaking Pharo users received a
dedicated channel in 2021: “Pharo en français c’est ici ⌣”.

Author Views. Author views map message authors to box-
shaped glyphs. Edges connect authors based on mentioning
tags (i.e., @username). Mapping the number of messages sent
or the number of active channels to the glyph size allows for a
visualization of the most (or least) active authors. An example
view spec in this category is the Author Activity Status View.

By combining the selection query support with the Author
Activity Status View we can quickly select 242 authors who
posted a single message to the server, as depicted in Fig. 8.

Fig. 8: Selection Query on Author Activity View

Half of them are not part of the Pharo Discord community
anymore (i.e., they quit the server, highlighted in red). It
remains to be investigated when they have been active and
what is the nature of their only message. Answering these
questions could help better address newcomers in the commu-
nity. By selecting ex-members with a low number of messages,
and manually inspecting their latest conversations, we could
better understand why they abandoned the server. All these
operations are already supported by DISCORDANCE.

Source Code Views. Code Blocks View and Class Refer-
ences View are examples of source code views focusing on
domain-specific content (e.g., mentioned classes) to provide
insights on language features discussed in the community.

Fig. 9: Code Blocks View Showing Code with Tooltips

In the Code Blocks View, such as the one depicted in Fig. 9,
the size of a code block allows distinguishing between short
snippets and longer code. We can hover over different blocks
to see their content. For example, one can find unformatted
long lines of copy-pasted code by looking at the “wide”

blocks, as these blocks have many characters in a few lines.
In this view spec, the syntax highlight metric is mapped to
the color attribute of code block entities. This allows visually
estimating the ratio of source code snippets for each language.
Length and language are only two examples, other source code
metrics can be implemented and used in a Code Blocks View.

Class References View is an example of a feature-specific
view that has been implemented by extending the domain
model. Code blocks are parsed to find class instances and
new nodes are added to the graph for each class mention we
find. Nodes are connected to the container message with code
reference edges. The resulting view spec maps the number
of mentions to the glyph size and uses simple labeled node
glyphs. It can help us pinpoint the most discussed classes and
find where their documentation could be improved.

IV. RELATED WORK

Stephany et al. visually analyzed mailing lists and source
code repositories of medium to large developer communities
with their tool, MAISPION [17]. In the domain of synchronous
communication, Mutton presented visualizations of IRC chan-
nels and their users [18]. Shihab et al. mined IRC meeting
logs of the GNOME GTK+ developers community [19].
More recently, Foundjem and Adams mined IRC chat logs of
the team responsible for OpenStack ecosystem releases [20].
Rich media platforms have also been investigated. Developer
discussions on Gitter have been successfully mined and used
for knowledge extraction [3]–[5], [21]. In particular, the tight
coupling with the GitHub cloud-based repository allowed
linking instant messaging discussions to projects’ issues. The
use of Slack by developers has been investigated with respect
to workflows and purpose [7], as a possible source for Q&A
structured documentation [8], and as a coordination tool to
reduce communication delays [9]. Parra et al. compared devel-
oper communications on Slack and Gitter [6]. Discord, which
recently gained popularity among developers, has been ana-
lyzed in a case study on the Pharo community [10], to extract
conversations for program comprehension [11], and as a data
source to be mined for research in Software Engineering [12].

V. CONCLUSION

DISCORDANCE allows to explore the history of a Discord
server. We described its user interface, architecture, and key
implementation concepts. We defined view specs and metrics
we used to provide insightful visualization of a server. Finally,
we showed how we used it to investigate the Pharo Discord
server and extract knowledge about its structure and contents.
DISCORDANCE gives access to source code and conversations
surrounding it. It is another step towards supporting devel-
opers in maintenance and evolution tasks by leveraging yet
unexplored documentation in instant messages.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the Swiss Na-
tional Science Foundation (SNSF) and the Fonds de la
Recherche Scientifique (F.R.S.-FNRS) for the joint Lead
Agency project “INSTINCT” (SNF Project No. 190113).



REFERENCES

[1] J. A. Teixeira and H. Karsten, “Managing to release early, often and on
time in the OpenStack software ecosystem,” Journal of Internet Services
and Applications, vol. 10, no. 1, p. 7, 2019.

[2] G. Poo-Caamaño, E. Knauss, L. Singer, and D. M. German, “Herding
cats in a FOSS ecosystem: A tale of communication and coordination
for release management,” Journal of Internet Services and Applications,
vol. 8, no. 1, pp. 1–24, 2017.

[3] E. Parra, A. Ellis, and S. Haiduc, “GitterCom: A dataset of Open Source
developer communications in Gitter,” in Proceedings of MSR 2020
(International Conference on Mining Software Repositories). ACM,
2020, pp. 563–567.

[4] O. Ehsan, S. Hassan, M. E. Mezouar, and Y. Zou, “An empirical study of
developer discussions in the Gitter platform,” Transactions on Software
Engineering and Methodology, vol. 30, no. 1, pp. 1–39, 2020.

[5] L. Shi, X. Chen, Y. Yang, H. Jiang, Z. Jiang, N. Niu, and Q. Wang, “A
first look at developers’ live chat on Gitter,” in Proceedings of ESEC/FSE
2021 (European Software Engineering Conference and Symposium on
the Foundations of Software Engineering). ACM, 2021, pp. 391–403.

[6] E. Parra, M. Alahmadi, A. Ellis, and S. Haiduc, “A comparative
study and analysis of developer communications on Slack and Gitter,”
Empirical Software Engineering, vol. 27, no. 2, pp. 1–33, 2022.

[7] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers
are slacking off: Understanding how software teams use Slack,” in
Proceedings of CSCW/SCC 2016 (Conference on Computer Supported
Cooperative Work and Social Computing Companion). ACM, 2016,
pp. 333–336.

[8] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A.
Kraft, “Exploratory study of Slack Q&A chats as a mining source for
software engineering tools,” in Proceedings of MSR 2019 (International
Conference on Mining Software Repositories). IEEE/ACM, 2019, pp.
490–501.

[9] V. Stray and N. B. Moe, “Understanding coordination in global software
engineering: A mixed-methods study on the use of meetings and Slack,”
Journal of Systems and Software, vol. 170, p. 110717, 2020.

[10] M. Raglianti, R. Minelli, C. Nagy, and M. Lanza, “Visualizing Discord
servers,” in Proceedings of VISSOFT 2021 (Working Conference on
Software Visualization). IEEE, 2021, pp. 150–154.

[11] M. Raglianti, C. Nagy, R. Minelli, and M. Lanza, “Using Discord
conversations as program comprehension aid,” in Proceedings of ICPC
2022 (International Conference on Program Comprehension). ACM,
2022.

[12] K. M. Subash, L. P. Kumar, S. L. Vadlamani, P. Chatterjee, and
O. Baysal, “DISCO: A dataset of Discord chat conversations for software
engineering research,” in Proceedings of MSR 2022 (International
Conference on Mining Software Repositories). ACM, 2022.

[13] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What
does software engineering community microblog about?” in Proceedings
of MSR 2012 (Working Conference on Mining Software Repositories).
IEEE, 2012, pp. 247–250.

[14] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Min-
ing StackOverflow to turn the IDE into a self-confident programming
prompter,” in Proceedings of MSR 2014 (Working Conference on Mining
Software Repositories). IEEE/ACM, 2014, pp. 102–111.

[15] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Institute of Technology, Tech. Rep., 2012.

[16] J. Cerezo, J. Kubelka, R. Robbes, and A. Bergel, “Building an expert
recommender chatbot,” in Proceedings of BotSE 2019 (International
Workshop on Bots in Software Engineering). IEEE/ACM, 2019, pp.
59–63.

[17] F. Stephany, T. Mens, and T. Gı̂rba, “Maispion: A tool for analysing and
visualising open source software developer communities,” in Proceed-
ings of IWST 2009 (International Workshop on Smalltalk Technologies).
ACM, 2009, pp. 50–57.

[18] P. Mutton, “Inferring and visualizing social networks on internet relay
chat,” in Proceedings of IV 2004 (International Conference on Informa-
tion Visualisation). IEEE Computer Society, 2004, pp. 35–43.

[19] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of internet relay
chat (IRC) meetings by developers of the GNOME GTK+ project,” in
Proceedings of MSR 2009 (International Working Conference on Mining
Software Repositories). IEEE, 2009, pp. 107–110.

[20] A. Foundjem and B. Adams, “Release synchronization in software
ecosystems,” Empirical Software Engineering, vol. 26, no. 3, p. 34, 2021.

[21] H. Sahar, A. Hindle, and C.-P. Bezemer, “How are issue reports
discussed in Gitter chat rooms?” Journal of Systems and Software, vol.
172, p. 110852, 2021.


